Category Archives: Hyperconvergence

New Hyperconvergence, Old Storage

We all dream of the day that we get to build a new infrastructure from the ground up without any existing technical debt to hold us back.  A greenfield deployment where we pick what is best, roll it out fresh and enjoy.  But most of us live in the real world where that is not very realistic and what we actually face is a world where we have to plan for the future but work with what we already have, as well.

Making do with what we have is nearly an inevitable fact of life in IT and when approaching storage when moving from an existing architecture to hyperconvergence things will be no different.  In a great many cases we will be facing a situation where an existing investment in storage will be in place that we do not want to simply discard but does not necessarily fit neatly into our vision of a hyperconverged future.

There are obvious options to consider, of course, such as returning leased gear, retiring older equipment or selling still useful equipment outright.  These are viable options and should be considered.  Eliminating old gear or equipment that does not fit well into the current plans can be beneficial as we can simplify our networks, reduce power consumption and possible even recoup some degree of our investments.

In reality, however, these options are rarely financially viable and we need to make more productive use of our existing technology investments.  What options are available to us, of course, depend on a range of factors.  But we will look at some examples of how common storage devices can be re-purposed in a new hyperconverged-based system in order to maintain their utility either until they are ready to retire or even, in some cases, indefinitely.

The easiest re-purposing of existing storage, and this applies equally to both NAS and SAN in most cases, is to designate them as backup or archival targets.  Traditional NAS and SAN devices are excellent backup hardware and are generally usable by nearly any backup mechanism, regardless of approach or vendor.  And because they are generic backup targets if a mixture of backup mechanisms are used, such as agent based, agentless and custom scripts, these can all work to the same target.  Backups so rarely get the attention and investment that they deserve that this is not just the easiest but often the most valuable use of pre-existing storage infrastructure.

Of course anything that is appropriate for backups can also be used for archival storage.  Archival needs are generally less needed (only a percentage of firms need archival storage while all need backups) and are of lower priority, so this is more of an edge reuse case, but still one to consider, especially for organizations that may be working to re-purpose a large number of possibly disparate storage devices.  However it is worth noting that moving to hyperconvergence does tend to “flatten” the compute and storage space in a way that may easily introduce a value to lower performance, lower priority archival storage that may not have existed or existed so obviously prior to the rearchitecting of the environment.

NAS has the unique advantageous use cases of being usable as general purpose network storage, especially for home directories of end users.  NAS storage can be used in so many places on the network, it is very easy to continue to use, after moving core architectures.  The most popular case is for users’ own storage needs with the NAS connected directly to end user devices which allows for storage capacity, performance and network traffic to be offloaded from the converged infrastructure to the NAS.    It would actually be very rare to remove a NAS from a hyperconverged network as its potential utility is so high and apparent.

Both SAN and NAS have the potential to be attached directly to the virtual machines running on top of a hyperconverged infrastructure as well.  In this way they can continue to be utilized in a traditional manner until such time as they are no longer needed or appropriate.  While not often the recommended approach, attaching network storage to a VM directly, there are use cases for this and it allows systems to behave as they always have in a physical realm into the future.  This is especially useful for mapped drives and user directories via a NAS, much as we mentioned for end user devices, but the cases are certainly not limited to this.

A SAN can provide some much needed functionality in some cases for certain workloads that require shared block storage that otherwise is not available or exposed on a platform.  Workloads on a VM will use the SAN as they always have and not even be aware that they are virtualized or converged.  Of course we can also attach a SAN to a virtualized file server or NAS head running on our hyperconverged infrastructure if the tiering for that kind of workload is deemed appropriate as well.

Working with existing infrastructure when implementing a new one does present a challenge, but one that we can tackle with creativity and logical approach.  Storage is a nearly endless challenge and having existing storage to re-purpose may easily end up being exceptionally advantageous.

The Commoditization of Architecture

I often talk about the moving “commodity line”, this line affects essentially all technology, including designs.  Essentially, when any new technology comes out it will start highly proprietary, complex and expensive.  Over time the technology moves towards openness, simplicity and becomes inexpensive.  At some point any given technology becomes goes so far in that direction that it falls over the “commodity” line where it moves from being unique and a differentiator to becoming a commodity and accessible to essentially everyone.

Systems architecture is no different from other technologies in this manner, it is simply a larger, less easily defined topic.  But if we look at systems architecture, especially over the last few decades, we can easily system servers, storage and complete systems moving from the highly proprietary towards the commodity.  Systems were complex and are becoming simple, they were expensive and are becoming inexpensive, they were proprietary and they are becoming open.

Traditionally we dealt with systems that were physical operating systems on bare metal hardware.  But virtualization came along and abstracted this.  Virtualization gave us many of the building blocks for systems commonidization.  Virtualization itself commoditized very quickly and today we have a market flush with free, open and highly enterprise hypervisors and toolsets making virtualization totally commoditized even several years ago.

Storage moved in a similar manner.  First there was independent local storage.  Then the SAN revolution of the 1990s brought us power through storage abstraction and consolidation.  Then the replicated local storage movement moved that complex and expensive abstraction to a more reliable, more open and more simple state.

Now we are witnessing this same movement in the orchestration and management layers of virtualization and storage.  Hyperconvergence is currently taking the majority of systems architectural components and merging them into a cohesive, intelligent singularity that allows for a reduction in human understanding and labour while improving system reliability, durability and performance.  The entirety of the systems architecture space is moving, quite rapidly, toward commoditization.  It is not fully commoditized yet, but the shift is very much in motion.

As in any space, it takes a long time for commoditization to permeate the market.  Just because systems have become commoditized does not mean that non-commodity remnants will not remain in use for a long time to come or that niche proprietary (non-commodity) aspects will not linger on.  Today, for example, systems architecture commoditization is highly limited to the SMB market space as there are effective upper bound limits to hyperconvergence growth that have yet to be tackled, but over time they will be tackled.

What we are witnessing today is a movement from complex to simple within the overall architecture space and we will continue to witness this for several years as the commodity technologies mature, expand, prove themselves, become well known, etc.  The emergence of what we can tell will be commodity technologies has happened but the space has not yet commoditized.  It is an interesting moment where we have what appears to be a very clear vision of the future, some scope in which we can realize its benefits today, a majority of systems and thinking that reside in the legacy proprietary realm and a mostly clear path forward as an industry both in technology focus as well as in education, that will allow us to commoditize more quickly.

Many feel that systems are becoming overly complex, but the opposite is true. Virtualization, modern storage systems, cloud and hyperconverged orchestration layers are all coming together to commoditize first individual architectural components and then architectural design as a whole.  The move towards simplicity, openness and effectiveness is happening, is visible and is moving at a very healthy pace.  The future of systems architecture is one that clearly is going to free IT professionals from spending so much time thinking about systems design and more time thinking about how to drive competitive advantage to their individual organizations.